Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998363

RESUMO

Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Ferro
2.
Curr Issues Mol Biol ; 45(3): 2157-2169, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975508

RESUMO

The skin is the most voluminous organ of the human body and is exposed to the outer environment. Such exposed skin suffers from the effects of various intrinsic and extrinsic aging factors. Skin aging is characterized by features such as wrinkling, loss of elasticity, and skin pigmentation. Skin pigmentation occurs in skin aging and is caused by hyper-melanogenesis and oxidative stress. Protocatechuic acid (PCA) is a natural secondary metabolite from a plant-based source widely used as a cosmetic ingredient. We chemically designed and synthesized PCA derivatives conjugated with alkyl esters to develop effective chemicals that have skin-whitening and antioxidant effects and enhance the pharmacological activities of PCA. We identified that melanin biosynthesis in B16 melanoma cells treated with alpha-melanocyte-stimulating hormone (α-MSH) is decreased by PCA derivatives. We also found that PCA derivatives effectively have antioxidant effects in HS68 fibroblast cells. In this study, we suggest that our PCA derivatives are potent ingredients for developing cosmetics with skin-whitening and antioxidant effects.

3.
Life Sci ; 301: 120619, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561750

RESUMO

AIMS: In biology and medicine, hypoxia refers to reduced oxygen tension or oxygen starvation resulting from various environmental or pathological conditions. Prolonged hypoxia may lead to an imbalance in protein production and a loss of muscle mass in animals. The physiological response to hypoxia includes oxidative stress-induced activation of complex cell-signaling networks such as hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K), and Janus kinase/signal transducer and activator of transcription (JAK-STAT). Methylsulfonylmethane (MSM) is a natural sulfur compound that regulates HIF-1α expression and provides cytoprotection from oxidative stress. In this study, we explored the anti-hypoxic activity and cytoprotective effect of MSM in cobalt chloride (CoCl2)-induced hypoxic C2C12 mouse myoblast culture. MATERIALS AND METHODS: We used western blotting, real time PCR, flow cytometry for molecular signaling studies and we also used MTT assay and ChIP assay along with comet assay for cellular processes. KEY FINDINGS: MSM prevented the CoCl2 induced cytotoxicity. Molecular markers of hypoxia, induced by CoCl2, were normalized or reduced by MSM, which also inhibited the effect of CoCl2-induced JAK2/STAT5b/Cyclin D1 and PI3K/AKT signaling. CoCl2-induced oxidative stress results in activation of the NRF2/HO-1-mediated cell survival pathway and inhibition of DNA repair, both of which were prevented by MSM. SIGNIFICANCE: We suggest MSM can be considered as a candidate drug for reducing the effects of hypoxia in both animals and humans.


Assuntos
Cloretos , Fosfatidilinositol 3-Quinases , Animais , Hipóxia Celular , Cloretos/farmacologia , Cobalto/metabolismo , Dimetil Sulfóxido , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mioblastos/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sulfonas
4.
J Oncol ; 2022: 6737248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222644

RESUMO

Embryonic cancer cells (CSCs) could cause different types of cancer, a skill that makes them even more dangerous than other cancer cells. Identifying CSCs using natural products is a good option as it inhibits the recurrence of cancer with moderate various effects. Ursolic acid (UA) is a pentacyclic triterpenoid extracted from fruit and herbal remedies and has known anticancer functions against various cancer cells. However, its potential against CSCs remains uncertain. This study was planned to examine the induction of cell apoptosis by the UA. For cell signaling studies, we performed experiments, which are real-time qPCR and immunoblotting. Also, various cellular processes were analyzed using flow cytometry. The results raised a barrier to cell proliferation by the UA in NTERA-2 and NCCIT cells. Morphological studies also confirmed the UA's ability to cause cell death in embryonic CSCs. Examination of cell death importation showed that the UA formed the expression of the iNOS and thus the cell generation and mitochondrial reactive oxygen generation, which created a reaction to cellular DNA damage by raising the protein levels of phospho-histone ATR and ATM. In addition, the UA created the binding of the G0/G1 cell cycle to NTERA-2 and NCCIT cells, improved the expression levels of p21 and p27, and reduced the expression levels of CDK4, cyclin D1, and cyclin E, confirming the UA's ability to initiate cell cycle arrest. Finally, the UA created an internal mechanism of apoptosis in the embryonic CSC using BAX and cytochrome c regulation as well as the regulation of BCL-xL and BCL-2 proteins. Therefore, UA could be the best candidate for targeting CSCs and thus suppressing the emergence of cancer.

5.
Front Oncol ; 11: 781720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804985

RESUMO

Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSCs with natural compounds is a promising approach as it suppresses cancer recurrence with fewer adverse effects. 6-Gingerol is an active component of ginger, which exhibits well-known anti-cancer activities. This study determined the mechanistic aspects of cell death induction by 6-gingerol. To analyze cellular processes, we used Western blot and real-time qPCR for molecular signaling studies and conducted flow cytometry. Our results suggested an inhibition of CSC marker expression and Wnt/ß-catenin signaling by 6-gingerol in NCCIT and NTERA-2 cells. 6-Gingerol induced reactive oxygen species generation, the DNA damage response, cell cycle arrest, and the intrinsic pathway of apoptosis in embryonic CSCs. Furthermore, 6-gingerol inhibited iron metabolism and induced PTEN, which both played vital roles in the induction of cell death. The activation of PTEN resulted in the inhibition of PD-L1 expression through PI3K/AKT/p53 signaling. The induction of PTEN also mediated the downregulation of microRNAs miR-20b, miR-21, and miR-130b to result in PD-L1 suppression by 6-gingerol. Hence, 6-gingerol may be a promising candidate to target CSCs by regulating PTEN-mediated PD-L1 expression.

6.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209829

RESUMO

Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Neoplasias Pulmonares/patologia , Silibina/farmacologia , Esferoides Celulares/patologia , Apoptose/efeitos dos fármacos , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo , Esferoides Celulares/efeitos dos fármacos
7.
Life (Basel) ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068523

RESUMO

Lipopolysaccharide (LPS)-induced inflammatory response leads to serious damage, up to and including tumorigenesis. Natural mineral sulfur, non-toxic sulfur (NTS), and methylsulfonylmethane (MSM) have anti-inflammatory activity that may inhibit LPS-induced inflammation. We hypothesized that sulfur compounds could inhibit LPS-induced inflammatory responses in CCD-986Sk skin fibroblasts. We used Western blotting and real-time PCR to analyze molecular signaling in treated and untreated cultures. We also used flow cytometry for cell surface receptor analysis, comet assays to evaluate DNA damage, and ELISA-based cytokine detection. LPS induced TLR4 activation and NF-κB signaling via canonical and protein kinase C (PKC)-dependent pathways, while NTS and MSM downregulated that response. NTS and MSM also inhibited LPS-induced nuclear accumulation and binding of NF-κB to proinflammatory cytokines COX-2, IL-1ß, and IL-6. Finally, the sulfur compounds suppressed LPS-induced ROS accumulation and DNA damage in CCD-986Sk cells. These results suggest that natural sulfur compounds could be used to treat inflammation and may be useful in the development of cosmetics.

8.
Mol Med Rep ; 24(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33907855

RESUMO

Janus kinase 2 (JAK2) and STAT3 signaling is considered a major pathway in lipopolysaccharide (LPS)­induced inflammation. Toll­like receptor 4 (TLR­4) is an inflammatory response receptor that activates JAK2 during inflammation. STAT3 is a transcription factor for the pro­inflammatory cytokine IL­6 in inflammation. Sulfur is an essential element in the amino acids and is required for growth and development. Non­toxic sulfur (NTS) can be used in livestock feeds as it lacks toxicity. The present study aimed to inhibit LPS­induced inflammation in C2C12 myoblasts using NTS by regulating TLR­4 and JAK2/STAT3 signaling via the modulation of IL­6. The 3­(4,5­dimethylthiazol­2­yl)­2,5­diphenyltetrazolium bromide assay was conducted to analyze cell viability and reverse transcription polymerase chain reaction and western blotting performed to measure mRNA and protein expression levels. Chromatin immunoprecipitation and enzyme­linked immunosorbent assays were used to determine the binding activity of proteins. The results indicated that NTS demonstrated a protective effect against LPS­induced cell death and inhibited LPS­induced expression of TLR­4, JAK2, STAT3 and IL­6. In addition, NTS inhibited the expression of nuclear phosphorylated­STAT3 and its binding to the IL­6 promoter. Therefore, NTS may be a potential candidate drug for the treatment of inflammation.


Assuntos
Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos/efeitos adversos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Enxofre/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Janus Quinase 2/genética , Camundongos , Fator de Transcrição STAT3/genética , Receptor 4 Toll-Like/genética
9.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925065

RESUMO

Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Receptores ErbB/metabolismo , Feminino , Zingiber officinale/química , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/metabolismo
10.
Biosensors (Basel) ; 11(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572585

RESUMO

Cyclic adenosine monophosphate (cAMP) plays a key role in signal transduction pathways as a second messenger. Studies on the cAMP dynamics provided useful scientific insights for drug development and treatment of cAMP-related diseases such as some cancers and prefrontal cortex disorders. For example, modulation of cAMP-mediated intracellular signaling pathways by anti-tumor drugs could reduce tumor growth. However, most early stage tools used for measuring the cAMP level in living organisms require cell disruption, which is not appropriate for live cell imaging or animal imaging. Thus, in the last decades, tools were developed for real-time monitoring of cAMP distribution or signaling dynamics in a non-invasive manner. Genetically-encoded sensors based on fluorescent proteins and luciferases could be powerful tools to overcome these drawbacks. In this review, we discuss the recent genetically-encoded cAMP sensors advances, based on single fluorescent protein (FP), Föster resonance energy transfer (FRET), single luciferase, and bioluminescence resonance energy transfer (BRET) for real-time non-invasive imaging.


Assuntos
Técnicas Biossensoriais , AMP Cíclico/análise , Proteínas Luminescentes , Animais , Transdução de Sinais
11.
Molecules ; 25(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429534

RESUMO

High glucose-induced inflammation leads to atherosclerosis, which is considered a major cause of death in type 1 and type 2 diabetic patients. Nuclear factor-kappa B (NF-κB) plays a central role in high glucose-induced inflammation and is activated through toll-like receptors (TLRs) as well as canonical and protein kinase C-dependent (PKC) pathways. Non-toxic sulfur (NTS) and methylsulfonylmethane (MSM) are two sulfur-containing natural compounds that can induce anti-inflammation. Using Western blotting, real-time polymerase chain reaction, and flow cytometry, we found that high glucose-induced inflammation occurs through activation of TLRs. An effect of NTS and MSM on canonical and PKC-dependent NF-κB pathways was also demonstrated by western blotting. The effects of proinflammatory cytokines were investigated using a chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. Our results showed inhibition of the glucose-induced expression of TLR2 and TLR4 by NTS and MSM. These sulfur compounds also inhibited NF-κB activity through reactive oxygen species (ROS)-mediated canonical and PKC-dependent pathways. Finally, NTS and MSM inhibited the high glucose-induced expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and binding of NF-κB protein to the DNA of proinflammatory cytokines. Together, these results suggest that NTS and MSM may be potential drug candidates for anti-inflammation therapy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Dimetil Sulfóxido/farmacologia , Glucose/farmacologia , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Regulação da Expressão Gênica , Humanos , Inflamação/prevenção & controle , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Manitol/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Células THP-1 , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Int J Mol Med ; 45(3): 931-938, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31894268

RESUMO

Insulin­like growth factor­1 (IGF­1) regulates cell growth, glucose uptake and protein metabolism, and is required for growth hormone (GH) signaling­mediated insulin production and secretion. IGF1 expression is associated with STAT5, which binds to a region (TTCNNNGAA) of the gene. Although sulfur is used in various fields, the toxicity of this element is a significant disadvantage as it causes indigestion, vomiting, diarrhea, pain and migraine. Therefore, it is difficult to conduct in vitro experiments to directly determine the effects of dietary sulfur. Additionally, it is difficult to dissolve non­toxic sulfur (NTS). The present study aimed to identify the role of NTS in GH signaling as a Jak2/STAT5b/IGF­1 pathway regulator. MTT assay was used to identify an optimum NTS concentration for C2C12 mouse muscle cells. Western blotting, RT­PCR, chromatin immunoprecipitation, overexpression and small interfering RNA analyses were performed. NTS was dissolved in 1 mg/ml DMSO and could be used in vitro. Therefore, the present study determined whether NTS induced mouse muscle cell growth via GH signaling. NTS notably increased STAT5b binding to the Igf1 promoter. NTS also promoted GH signaling by upregulating GH receptor expression, similar to GH treatment. NTS enhanced GH signaling by regulating Jak2/STAT5b/IGF­1 signaling pathway factor expression in C2C12 mouse muscle cells. Thus, NTS may be used as a GH­enhancing growth stimulator.


Assuntos
Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT5/metabolismo , Enxofre/farmacologia , Animais , Linhagem Celular , Camundongos , Transdução de Sinais/efeitos dos fármacos
13.
Molecules ; 24(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861157

RESUMO

5-Acetoxymethyl-2-furfural (AMF) was prepared from D-fructose via 1,6-diacetylfructose (DAF) through a simple two-step reaction pathway. Immobilized enzyme (Novozym 435) was found to be the best enzymatic catalyst for the trans-esterification step (yielding 94.6% DAF). In the dehydration step, while soluble H2SO4 was found to be the best acidic catalyst (yielding 86.6% AMF), we opted to utilize heterogeneous cation exchange resin (Amberlyst 15) together with recyclable industrial solvents (1,4-dioxane) for a more sustainable AMF synthesis procedure. Although the total yield of AMF was a little lower, both the enzyme and the solid acid catalyst could be recycled for five cycles without a significant loss of activity, which has a major contribution to the cost-efficient aspect of the entire process.


Assuntos
Resinas de Troca de Cátion/química , Enzimas Imobilizadas , Frutose/química , Furaldeído/química , Lipase/química , Catálise , Desidratação , Esterificação , Solventes/química
14.
Polymers (Basel) ; 11(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382505

RESUMO

For the fabrication of a peelable coating material that decomposes methyl paraoxone (MPO), a nerve agent simulant, self-crosslinkable waterborne polyurethanes (PUs) containing silane groups at the ends and a metal organic framework (UiO-66) were synthesized. UiO-66 dispersed PU solutions for spray coating were prepared by controlling the amount of silane in PU and the content of UiO-66. PUs with a large amount of silane (more than 7.2 wt.%) were easily gelated by adding UiO-66 because the solution was changed from neutral (pH = 7.3) to strongly acidic (pH = 2.5). Therefore, the silane content in PUs should be carefully controlled for the fabrication of composite films. When UiO-66 was added to the PU with a silane content of 2.7 wt.%, the reinforcing effect by UiO-66 was observed up to 15.3 wt.%, but a further increase in UiO-66 content decreased both the tensile strength and the elongation. The peel strength of the PU composite films on polyethylene (PET) and glass substrates decreased with increasing UiO-66 content, but their MPO conversion increased with increasing UiO-66 content. The PU composite film with 49.5 wt.% of added UiO-66 showed the MPO conversion of 63.2% and was easily peeled off from PET and glass substrates.

15.
J Hazard Mater ; 365: 261-269, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30447633

RESUMO

A region suffering from an attack of a nerve agent requires not only a highly sorptive material but also a fast-acting catalyst to decontaminate the lethal chemical present. The product should be capable of high sorptive capacity, selectivity and quick response time to neutralize the long lasting harmful effects of nerve agents. Herein, we have utilized organophosphorus hydrolase (OPH) as a non-toxic bio-catalytic material held in with the supporting matrix of poly-ß-cyclodextrin (PCD) as a novel sorptive reinforced self-decontaminating material against organophosphate intoxication. OPH coated PCD (OPH-PCD) will not only be providing support for holding enzyme but also would be adsorbing methyl paraoxon (MPO) used as a simulant, in a host-guest inclusion complex formation. Sorption trend for PCD revealed preference towards the more hydrophobic MPO against para-nitrophenol (pNP). The results show sorption capacity of 1.26 mg/g of 100 µM MPO with PCD which was 1.7 times higher compared to pNP. The reaction rate with immobilized OPH-PCD was found to be 23% less compared to free enzyme. With the help of OPH-PCD, continuous hydrolysis (100%) of MPO into pNP was observed for a period of 24 h through packed bed reactor with good reproducibility and stability of enzyme. The long-term stability also confirmed its stable nature for the investigation period of 4 days where it maintained activity. Combined with its fast and reactive nature, the resulting self-decontaminating regenerating material provides a promising strategy for the neutralization of nerve agents and preserving the environment.


Assuntos
Arildialquilfosfatase/química , Substâncias para a Guerra Química/química , Inibidores da Colinesterase/química , Descontaminação/métodos , Enzimas Imobilizadas/química , Inseticidas/química , Paraoxon/análogos & derivados , beta-Ciclodextrinas/química , Adsorção , Biocatálise , Concentração de Íons de Hidrogênio , Paraoxon/química
16.
Macromol Biosci ; 19(2): e1800353, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30565861

RESUMO

DNA aptamers are integrated into synthetic hydrogel networks with the aim of creating hydrogels that undergo volume changes when exposed to target molecules. Specifically, single-stranded DNA aptamers in cDNA-bound, extended state are incorporated into hydrogel networks as cross-links, so that the nanoscale conformational change of DNA aptamers upon binding to target molecules will induce macroscopic volume decreases of hydrogels. Hydrogels incorporating adenosine triphosphate (ATP)-binding aptamers undergo controllable volume decreases of up to 40.3 ± 4.6% when exposed to ATP, depending on the concentration of DNA aptamers incorporated in the hydrogel network, temperature, and target molecule concentration. Importantly, this approach can be generalized to aptamer sequences with distinct binding targets, as demonstrated here that hydrogels incorporating an insulin-binding aptamer undergo volume changes in response to soluble insulin. This work provides an example of bioinspired hydrogels that undergo macroscopic volume changes that stem from conformational shifts in resident DNA-based cross-links.


Assuntos
Trifosfato de Adenosina/química , Aptâmeros de Nucleotídeos/química , DNA/química , Hidrogéis/química , Insulina/química , Conformação de Ácido Nucleico , Polietilenoglicóis/química
17.
ACS Appl Mater Interfaces ; 10(4): 4324-4332, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29318876

RESUMO

This paper reports unprecedented dynamic surfaces based on zwitterionic low-density self-assembled monolayers (LDSAMs) of alkanethiolates on gold, which integrate three interconvertible states-bacteria-adherable, bactericidal, and nonfouling states-through electrical modulations. The conformations of alkanethiolates were electrically modulated to generate zwitterionic, anionic, and cationic surfaces, which responded differently to bacteria and determined the fate of bacteria. Furthermore, the reversible switching of multifunctions of the surface was realized for killing bacteria and subsequently releasing dead bacteria from the surface. For practical application of our strategy, we examined the selective antibacterial effect of our surface for eradication of mycoplasma contaminants in contaminated mammalian cell cultures.


Assuntos
Bactérias , Animais , Antibacterianos , Ouro , Propriedades de Superfície
18.
Anal Sci ; 33(12): 1381-1386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225228

RESUMO

The selective isolation of phosphorylated peptides and subsequent analysis using mass spectrometry is important for understanding how protein kinase and phosphatase signals can precisely modulate the on/off states of signal transduction pathways. However, the isolation and detection of multi-phosphorylated peptides is still limited due to their distinct affinity to various materials and their poor ionization efficiency. Here, we report a highly efficient and selective enrichment of phosphorylated peptides using binuclear Zn2+-dipicolylamine complex-coated magnetic microspheres (ZnMMs). ZnMMs can utilize the rapid and selective isolation/enrichment of phosphorylated peptides and the subsequent mass spectrometric analysis, given the intrinsic magnetic property of magnetic microspheres and the highly selective binding ability of the binuclear Zn2+-dipicolylamine complex to phosphate groups. α-Casein and ß-casein were chosen for a proof-of-concept demonstration. We contemplated that phosphopeptides were selectively isolated and enriched from both the tryptic digests of casein proteins and mixed samples with a high degree of sensitivity by facilitating ZnMMs. Especially, ZnMMs showed high efficiency with multi-phosphopeptides, which are in general difficult to be examined by mass analysis on account of their poor ionization efficiency. For the model protein α, ß-casein mixture of the tryptic digest, 17 phosphopeptides were identified with ZnMMs and 82% of the enriched phosphopeptides were multi-phosphorylated peptides, indicating that ZnMMs have excellent enrichment efficiency and strong affinity towards multi-phosphorylated peptides.


Assuntos
Imãs/química , Microesferas , Fosfopeptídeos/análise , Fosfopeptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zinco/química , Animais , Campos Magnéticos
19.
Biomater Sci ; 4(9): 1314-7, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27464359

RESUMO

Although rolling circle amplification (RCA) is an efficient method to produce DNA materials for biomedical applications, it does not yield nano-sized products suitable for intracellular delivery. We here provide the ways to control the size of RCA products and show a potential application of the size-controlled DNA nanoparticles.


Assuntos
DNA/química , Nanopartículas/química , Técnicas de Amplificação de Ácido Nucleico , Biofísica , Tamanho da Partícula
20.
J Mol Model ; 22(7): 147, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27262575

RESUMO

We utilized molecular dynamics (MD) to investigate the behavior of nitromethane molecules (NMs) enclosed inside carbon nanotube (CNT) containers sealed with buckybowl caps. Two different sizes of CNT containers, i.e., (10,10) and (20,20), were employed to contain the energetic NMs. After loading the NMs into these containers, MD simulations were carried out at different loading densities. The loading density was changed from 0.4 to 2.0 g/cc. At low loading densities, NMs preferentially resided near the surface of the CNT wall (orienting themselves in the cylindrical direction) and near the buckybowl caps (orienting themselves in the principal-axis direction). This behavior suggests the buckybowl caps and the CNT wall have attractive interactions with the NMs. The distribution of the NMs inside the containers did not change upon increasing the temperature from ambient to 100 °C. However, the positional preference of the NMs found at ambient temperature to 100 °C was not the same as that observed at 1000 °C due to the increased thermal motions of the NMs. The size of the CNT container had a significant effect on the fluidity of the NMs. From 25 to 100 °C, the NMs inside the (10,10) CNT container were only mobile at low loading densities. On the other hand, in the (20,20) CNT container, the NMs showed good mobility up to a loading density of 1.6 g/cc. Graphical Abstract Attractive interactions between the nitromethanes and the buckybowl caps as well as the carbon nanotube wall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...